
Loop Invariants and Binary Search

Chapter 4.4, 5.1

Outline

 Iterative Algorithms, Assertions and Proofs of Correctness

 Binary Search: A Case Study

Outline

 Iterative Algorithms, Assertions and Proofs of Correctness

 Binary Search: A Case Study

Assertions

An assertion is a statement about the

state of the data at a specified point in

your algorithm.

An assertion is not a task for the algorithm

to perform.

You may think of it as a comment that is

added for the benefit of the reader.

Loop Invariants

 Binary search can be implemented as an iterative

algorithm (it could also be done recursively).

 Loop Invariant: An assertion about the current state

useful for designing, analyzing and proving the

correctness of iterative algorithms.

Other Examples of Assertions

 Preconditions: Any assumptions that must be true

about the input instance.

 Postconditions: The statement of what must be true

when the algorithm/program returns.

 Exit condition: The statement of what must be true to

exit a loop.

Iterative Algorithms

Take one step at a time

towards the final destination

loop (done)

take step

end loop

From the Pre-Conditions on the input instance

we must establish the loop invariant.

Establishing Loop Invariant

Maintain Loop Invariant

 Suppose that

We start in a safe location (pre-condition)

 If we are in a safe location, we always step

to another safe location (loop invariant)

 Can we be assured that the

computation will always be in a safe

location?

 By what principle?

Maintain Loop Invariant
• By Induction the computation will

always be in a safe location.

(0)

, ()

, () (1)

S

i S i

i S i S i

 


  


    

Ending The Algorithm

 Define Exit Condition

 Termination: With sufficient progress,

the exit condition will be met.

 When we exit, we know

 exit condition is true

 loop invariant is true

from these we must establish

the post conditions.

Exit

Exit

0 km Exit

Definition of Correctness

<PreCond> & <code> <PostCond>

If the input meets the preconditions,

then the output must meet the postconditions.

If the input does not meet the preconditions, then
nothing is required.

Outline

 Iterative Algorithms, Assertions and Proofs of Correctness

 Binary Search: A Case Study

Define Problem: Binary Search

 PreConditions

 Key 25

 Sorted List

 PostConditions

 Find key in list (if there).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Define Loop Invariant

 Maintain a sublist.

 If the key is contained in the original list, then the key is

contained in the sublist.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Define Step

 Cut sublist in half.

 Determine which half the key would be in.

 Keep that half.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid

Define Step

 It is faster not to check if the middle element is the key.

 Simply continue.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

Make Progress

 The size of the list becomes smaller.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

79 km

75 km

Exit Condition

 If the key is contained in the
original list,

then the key is contained in the
sublist.

 Sublist contains one element.

Exit

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

0 km

• If element = key,
return associated
entry.

• Otherwise return
false.

key 25

Running Time

The sublist is of size n, n/2,
n/4,

n/8,…,1

Each step O(1) time.

Total = O(log n)

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

Running Time

 Binary search can interact poorly with the memory

hierarchy (i.e. caching), because of its random-access

nature.

 It is common to abandon binary searching for linear

searching as soon as the size of the remaining span falls

below a small value such as 8 or 16 or even more in

recent computers.

http://en.wikipedia.org/wiki/Cache

<precondition>: A[1..n] is sorted in non-decreasing order

<postcondition>: If is in A[1..n], algorithm returns

1,

 its location

loop-invariant>: If is

BinarySea

in

rch(A[1..n],

whil

)

e

p q

key

key

q p

e

n

k y





 

if []

els

2

1

return()

return("Key n

A[1..n], then

e

end

end

if []

end

 is in A[p..

ot in list")

q]

p q
mid

q mid

p mi

key A m

key

id

key A p

e

d

p

lse



 
   



 



Simple, right?

 Although the concept is simple, binary search is

notoriously easy to get wrong.

 Why is this?

Boundary Conditions

 The basic idea behind binary search is easy to grasp.

 It is then easy to write pseudocode that works for a

‘typical’ case.

 Unfortunately, it is equally easy to write pseudocode that

fails on the boundary conditions.

1

if []

else

end

q mid

p

key A mid

mid









Boundary Conditions

1

if []

else

end

q mid

p

key A mid

mid








or

What condition will break the loop invariant?

Boundary Conditions

key 36

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

mid

sC eod lek cey t A[m rige hid] t lf: ha 

Bug!!

1

if []

else

end

q mid

p

key A mid

mid









Boundary Conditions

1

if []

else

end

q mid

p

key A mid

mid









if < []

else

end

1q mid

p

key A mid

mid

 



OK OK Not OK!!

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Boundary Conditions

mid
2

 
  
 

p q
mid

2

 
  
 

p q
or

Shouldn’t matter, right? Select mid
2

p q 
   

6 74

Boundary Conditions

key 25

9591888372605351494336252121181353

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid

Select mid
2

p q 
   

2518 74

Boundary Conditions

key 25

9591888372605351494336212113653

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid
Select mid

2

p q 
   

2513 74

Boundary Conditions

key 25

9591888372605351494336212118653

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

•Another bug!

No progress

toward goal:

Loops Forever!

mid
Select mid

2

p q 
   

if [

mid

]

2

1

else

end

key A mi

p q

q mid

p mid

d

 
   

 





Boundary Conditions

if [

mid

]

2

1

else

end

key A mi

p q

q mid

p mid

d

 
   

 





if < [

mid
2

1

]

else

end

key A mid

p q

q mid

p mid

 
   

 



OK OK Not OK!!

if [

mid

]

2

1

else

end

key A mi

p q

q mid

p mid

d

 
   

 





Getting it Right

 How many

possible

algorithms?

 How many

correct

algorithms?

 Probability of

guessing

correctly?

midr
2

o ?
p q 

   

if < [or ?]key A mid

else

o

end

1r q mid

p mid

 



BinarySearch(A[1..n],key)

<precondition>: A[1..n] is sorted in non-decreasing order

<postcondition>: If key is in A[1..n], algorithm returns its location

p = 1, q = n

while q ³ p

< loop-invariant>: If key is in A[1..n], then key is in A[p..q]

mid =
p + q

2

ê

ë

ê
ê

ú

û

ú
ú

if key <A[mid]

q = mid - 1

else if key > A[mid]

p = mid + 1

else

return(mid)

end

end

return("Key not in list")

Alternative Algorithm: Less Efficient but More Clear

Still (log), but with slightly larger constant.n

 A volunteer, please.

Card Trick

Pick a Card

Done

Thanks to J. Edmonds for this example.

Loop Invariant:
The selected card is one

of these.

Which
column?

left

Loop Invariant:
The selected card is one

of these.

Selected column is placed
in the middle

I will rearrange the cards

Relax Loop Invariant:
I will remember the same

about each column.

Which
column?

right

Loop Invariant:
The selected card is one

of these.

Selected column is placed
in the middle

I will rearrange the cards

Which
column?

left

Loop Invariant:
The selected card is one

of these.

Selected column is placed
in the middle

Here is your
card.

Wow!

Ternary Search

 Loop Invariant: selected card in central subset of

cards

 How many iterations are required to guarantee success?

1Size of subset = / 3

where

total number of cards

iteration index

in

n

i

  





Learning Outcomes

 From this lecture, you should be able to:

 Use the loop invariant method to think about iterative algorithms.

 Prove that the loop invariant is established.

 Prove that the loop invariant is maintained in the ‘typical’ case.

 Prove that the loop invariant is maintained at all boundary

conditions.

 Prove that progress is made in the ‘typical’ case

 Prove that progress is guaranteed even near termination, so that

the exit condition is always reached.

 Prove that the loop invariant, when combined with the exit

condition, produces the post-condition.

 Trade off efficiency for clear, correct code.

