Loop Invariants and Binary Search

Chapter 4.4, 5.1

Outline

> lterative Algorithms, Assertions and Proofs of Correctness

» Binary Search: A Case Study

Outline

> lterative Algorithms, Assertions and Proofs of Correctness

» Binary Search: A Case Study

Assertions

»An assertion Is a statement about the
state of the data at a specified point in
your algorithm.

» An assertion Is not a task for the algorithm
to perform.

»You may think of it as a comment that is
added for the benefit of the reader.

Loop Invariants

» Binary search can be implemented as an iterative
algorithm (it could also be done recursively).

» Loop Invariant: An assertion about the current state
useful for designing, analyzing and proving the
correctness of iterative algorithms.

Other Examples of Assertions

» Preconditions: Any assumptions that must be true
about the input instance.

» Postconditions: The statement of what must be true
when the algorithm/program returns.

» Exit condition: The statement of what must be true to
exit a loop.

lterative Algorithms

Take one step at a time

towards the final destination

loop (done)
take step

end loop

Establishing Loop Invariant

From the Pre-Conditions on the input instance
we must establish the loop Invariant.

Maintain Loop Invariant

» Suppose that
J We start in a safe location (pre-condition)

d If we are in a safe location, we always step
to another safe location (loop invariant)

» Can we be assured that the
computation will always be in a safe
location?

» By what principle?

Maintain Loop Invariant

By Induction the computation will
always be In a safe location. &
- = V1,S(i) :@
@: vI,S(1) = S(1+1)

Ending The Algorithm

> Define Exit Condition |

» Termination: With sufficient progress,

the exit condition will be met. (T BT

» When we exit, we know
] exit condition is true

U loop invariant is true

from these we must establish

the post conditions.

Definition of Correctness

<PreCond> & <code> =»<PostCond>

If the Input meets the preconditions,

then the output must meet the postconditions.

If the Input does not meet the preconditions, then
nothing Is required.

Outline

> lterative Algorithms, Assertions and Proofs of Correctness

» Binary Search: A Case Study

» PreConditions

d Key
1 Sorted List

Define Problem: Binary Search

25

5|6 1318|2121 |25|36|43 (49|51 |53|60|72|74|83|88|91]95
> PostConditions

O Find key in list (if there).
5613|1821 43149 |51 |53|60|72|74|83|88|91]95

21@ 36

Define Loop Invariant

» Maintain a sublist.

> If the key Is contained in the original list, then the key is

contained in the sublist.

key 25

88

91

95

Define Step

» Cut sublist in half.

» Determine which half the key would be In.

» Keep that half.

88

91

95

If key < mid,
then key is in
left half.

If key > mid,
then key iIs in
right half.

Define Step

» It is faster not to check if the middle element is the key.

» Simply continue.

88

91

95

If key < mid,
then key iIs in
left half.

If key > mid,
then key is in
right half.

Make Progress

» The size of the list becomes smaller.

88

91

95

88

91

95

Exit Condition

key 25

5 | 6|13 |18 |21 |21 (@B 36 | 43|49 |51 |53|60|72|74|83]88]|o01

95

—

» If the key is contained in the . _
original list, If element = ke)éi
then the key is contained in the return assoclate
sublist. ‘ entry.
e Otherwise return

» Sublist contains one element.
false.

|Exit

Running Time

The sublist is of size n, "/, "/,, "/g,...,1

Each step O(1) time.

Total = O(log n)

88

91

95

If key < mid,
then key is in
left half.

If key > mid,
then key is In
right half.

Running Time

» Binary search can interact poorly with the memory
hierarchy (i.e. caching), because of its random-access
nature.

» It is common to abandon binary searching for linear
searching as soon as the size of the remaining span falls
below a small value such as 8 or 16 or even more in
recent computers.

http://en.wikipedia.org/wiki/Cache

BinarySearch(A[1..n] key)
<precondition>: A[l..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p=1qg=n
while g > p

<loop-invariant>: If key is in A[1..n], then key is in A[p..q]

., | p+gq
mld—[ZJ

if key <A[mid]
q = mid
else
p =mid +1

end
end
if key = A[p]
return(p)
else
return("Key not in list")
end

Simple, right?

» Although the concept is simple, binary search is
notoriously easy to get wrong.

» Why is this?
\
ol

Boundary Conditions

» The basic idea behind binary search is easy to grasp.

» It is then easy to write pseudocode that works for a
‘typical’ case.

» Unfortunately, it is equally easy to write pseudocode that
fails on the boundary conditions.

Boundary Conditions

if key <A[mid]
q = mid
else
p =mid +1 or

end

What condition will break the loop invariant?

Boundary Conditions

88

91

95

Code: key > A[mid] — select right half

Bug!!

Boundary Conditions

if key <A[mid] if key <A[mid] key <AlmpM]
q = mid g =mid -1 ‘

else else
p=mid +1 p = mid

end end

OK OK Not OK!!

Boundary Conditions

or

88

91

95

Boundary Conditions

Select mid = [

pP+q

2

|

AR A R AN
SV S 'f‘..;,.. o iy =""-~\1‘;‘.~ 1%
"’-‘&" S N M .: -~

| AP { TR A AN RSO | B
S) AR IR, <n d :

i e T oS T
n - ot s T P ~ {-‘ > "-':.
) P " IS
|25 |36 |

‘.:Y; e S : s

By
SO |

| 49

51

53

60

72

74

83

88

91

95

S ~ H_J
If key > mid,
then key is in
right half.

If key < mid,
then key Is In
left half.

Boundary Conditions

Select mid = {p +q1
K)
13 |18 | 21 | 21 |25 |86 (48| 49 |51 |53 |60 |72 |74 |83 |88 | 91|95
—’
If key <mid, If key > mid,
then key isin then key Is in
left half. right half.

Boundary Conditions

NoO progress
toward goal:

«Another bug! 9 Loops Forever!

Select midz[pﬂﬂ
mid 2
K !
5 | 6|13]18|21]21 2536 43 |49 |51 |53|60|72|74|83|88|91]095
A
If key <mid, If key >mid,

then key is in then key is in

left half.

right half.

Boundary Conditions

mid = L”%J mid = P’%‘ﬂ
if key <A[mid] if key <A[mid]
q = mid g =mid -1
else else
p=mid +1 p = mid
end end

OK OK Not OK!!

Getting It Right

» How many

possible | b+
algorithms? or mid = [—1 ?
J mid = {P +q J o 2
» How many 2
correct if key <A[mid]— or if key <A[mid]?
algorithms? g = mid
» Probability of else
correctly? P or g=mid -1
end else
p = mid

end

Alternative Algorithm: Less Efficient but More Clear

BinarySearch(A[1..n], key)
<precondition>: A[l..n]is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p=1g=n
while g > p

<loop-invariant>: If key is in A[1..n], then key is in A[p..q]

mid {—pﬂ]“
2

if key <A[mid]
g=mid- 1
else if key > A[mid]
p=mid +1
else _ _ |
return(mid) Still ®(logn), but with slightly larger constant.
end
end

return("Key not in list")

Card Trick

» A volunteer, please.

'-\.

Thanks to J. Edmonds for this example.

Ternary Search

» Loop Invariant: selected card in central subset of
cards

Size of subset = (n/Biﬂ

where
n = total number of cards
| = iteration index

» How many iterations are required to guarantee success?

Learning Outcomes

» From this lecture, you should be able to:
O Use the loop invariant method to think about iterative algorithms.
O Prove that the loop invariant is established.
O Prove that the loop invariant is maintained in the ‘typical’ case.

O Prove that the loop invariant is maintained at all boundary
conditions.

O Prove that progress is made in the ‘typical’ case

O Prove that progress is guaranteed even near termination, so that
the exit condition is always reached.

O Prove that the loop invariant, when combined with the exit
condition, produces the post-condition.

O Trade off efficiency for clear, correct code.

