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Assertions

An assertion is a statement about the 

state of the data at a specified point in 

your algorithm.

An assertion is not a task for the algorithm 

to perform. 

You may think of it as a comment that is 

added for the benefit of the reader.



Loop Invariants

 Binary search can be implemented as an iterative 

algorithm (it could also be done recursively).

 Loop Invariant:  An assertion about the current state 

useful for designing, analyzing and proving the 

correctness of iterative algorithms.



Other Examples of Assertions

 Preconditions: Any assumptions that must be true 

about the input instance.

 Postconditions: The statement of what must be true 

when the algorithm/program returns.

 Exit condition: The statement of what must be true to 

exit a loop.



Iterative Algorithms

Take one step at a time

towards the final destination

loop (done)

take step

end loop



From the Pre-Conditions on the input instance 

we must establish the loop invariant.

Establishing Loop Invariant



Maintain Loop Invariant

 Suppose that

We start in a safe location (pre-condition)

 If we are in a safe location, we always step 

to another safe location (loop invariant)

 Can we be assured that the 

computation will always be in a safe 

location?

 By what principle?



Maintain Loop Invariant
• By Induction the computation will 

always be in a safe location.
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Ending The Algorithm

 Define Exit Condition

 Termination: With sufficient progress, 

the exit condition will be met.

 When we exit, we know

 exit condition is true

 loop invariant is true

from these we must establish  

the post conditions.

Exit

Exit

0 km Exit



Definition of Correctness

<PreCond> & <code> <PostCond>

If the input meets the preconditions, 

then the output must meet the postconditions. 

If the input does not meet the preconditions, then 
nothing is required.
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Define Problem: Binary Search

 PreConditions

 Key       25

 Sorted List

 PostConditions

 Find key in list (if there).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95



Define Loop Invariant

 Maintain a sublist.

 If the key is contained in the original list, then the key is 

contained in the sublist.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95



Define Step

 Cut sublist in half.

 Determine which half the key would be in.

 Keep that half.

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid



Define Step

 It is faster not to check if the middle element is the key.

 Simply continue.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.



Make Progress

 The size of the list becomes smaller.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95
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Exit Condition

 If the key is contained in the 
original list, 

then the key is contained in the 
sublist.

 Sublist contains one element.

Exit

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

0 km

• If element = key, 
return associated 
entry.

• Otherwise return 
false.

key 25



Running Time 

The sublist is of size n, n/2, 
n/4, 

n/8,…,1

Each step O(1) time.

Total = O(log n) 

key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.



Running Time

 Binary search can interact poorly with the memory 

hierarchy (i.e. caching), because of its random-access 

nature. 

 It is common to abandon binary searching for linear 

searching as soon as the size of the remaining span falls 

below a small value such as 8 or 16 or even more in 

recent computers.

http://en.wikipedia.org/wiki/Cache


<precondition>:  A[1..n] is sorted in non-decreasing order

<postcondition>: If  is in A[1..n], algorithm returns

1,  

 its location

loop-invariant>: If  is 
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Simple, right?

 Although the concept is simple, binary search is 

notoriously easy to get wrong.

 Why is this?



Boundary Conditions

 The basic idea behind binary search is easy to grasp.

 It is then easy to write pseudocode that works for a 

‘typical’ case.

 Unfortunately, it is equally easy to write pseudocode that 

fails on the boundary conditions.
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What condition will break the loop invariant?



Boundary Conditions

key 36

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

mid
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key 25

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95
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Boundary Conditions

key 25

9591888372605351494336252121181353

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid

Select mid  
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Boundary Conditions

key 25

9591888372605351494336212113653

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

mid
Select mid  
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Boundary Conditions

key 25

9591888372605351494336212118653

If key ≤ mid,

then key is in

left half.

If key > mid,

then key is in

right half.

•Another bug!

No progress 

toward goal: 

Loops Forever!
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if  [
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Getting it Right

 How many 

possible 

algorithms?

 How many 

correct

algorithms?

 Probability of 

guessing

correctly?

midr 
2

o ? 
p q 

   

if  < [  or ?]key A mid

else

o

end

1r q mid

p mid

 





  

BinarySearch(A[1..n],key )

<precondition>:  A[1..n] is sorted in non-decreasing order

<postcondition>: If key  is in A[1..n], algorithm returns its location

p = 1,  q = n

while q ³ p

< loop-invariant>: If key  is in A[1..n], then key  is in A[p..q]

mid =
p + q
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if key <A[mid]

q = mid - 1

else if key > A[mid]

p = mid + 1

else

return(mid)

end

end

return("Key not in list")

Alternative Algorithm:  Less Efficient but More Clear

Still (log ),  but with slightly larger constant.n



 A volunteer, please.

Card Trick



Pick a Card

Done

Thanks to J. Edmonds for this example.



Loop Invariant:
The selected card is one 

of  these.



Which 
column?

left



Loop Invariant:
The selected card is one 

of  these.



Selected column is placed
in the middle 



I will rearrange the cards



Relax Loop Invariant:
I will remember the same 

about each column.



Which 
column?

right



Loop Invariant:
The selected card is one 

of  these.



Selected column is placed
in the middle 



I will rearrange the cards



Which 
column?

left



Loop Invariant:
The selected card is one 

of  these.



Selected column is placed
in the middle 



Here is your 
card.

Wow!



Ternary Search

 Loop Invariant:  selected card in central subset of             

cards

 How many iterations are required to guarantee success?

1Size of subset = / 3

where

total number of cards
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Learning Outcomes

 From this lecture, you should be able to:

 Use the loop invariant method to think about iterative algorithms.

 Prove that the loop invariant is established.

 Prove that the loop invariant is maintained in the ‘typical’ case.

 Prove that the loop invariant is maintained at all boundary 

conditions.

 Prove that progress is made in the ‘typical’ case

 Prove that progress is guaranteed even near termination, so that 

the exit condition is always reached.

 Prove that the loop invariant, when combined with the exit 

condition, produces the post-condition.

 Trade off efficiency for clear, correct code.


